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19. Abstract -- continued.

both subsonic and supersonic convective Mach numbers.
For an unbounded mixing layer with subsonic convective Mach numbers, there is only one

unstable mode propagating with a phase velocity Cm approximately equal to the isentropically
estimated convective velocity of the large scale structures u*. As the convective Mach
number approaches or exceeds unity, there are always two unstable spatial modes, one is
with a phase velocity C*m < u* (fast mode). For the low supersonic convective Mach
numbers, the fast mode is more unstable than the slow mode when the heavy gas is on the
low speed side and the slow mode is dominant when the heavy gas is on the high speed side.
The effect of parallel flow guide walls on a spatially growing mixing layer is also

investigated. It is shown that, in this case, if the convective Mach number exceeds a
critical value of approximately unity, there are many supersonic unstable modes. The
maximum amplification rates of mixing layers approach an asymptotic value and this maximum
amplification rate increases to a maximum value and decreases again as the distance between
the walls decreases. For a mixing layer inside parallel flow guide walls, the growth rate
of three-dimensional modes is larger than the corresponding two-dimensional mode at high
convective Mach numbers. But the growth rate of two-dimensional supersonic instability
waves has a larger value than their three-dimensional counterparts for a mixing layer inside
a rectangular duct (Tam & Hu, 1988, 1989). Contour plots of the pressure perturbation
fields for both unbounded and bounded mixing layers indicate that there are waves
propagating outward from the mixing layer along the Mach angle, and that the walls provide a
feedback mechanism between the growing mixing layer and this compression/expansion wave system.
The bounded mixing layers are more unstable than the corresponding free mixing layers for
supersonic convective Mach numbers. The streaklines of the flow confirm that the spreading
rate of the mixing layer is unusually small for supersonic disturbances.
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ABSTRACT

The behavior of both unbounded and bounded compressible plane

mixing layers with respect to two- and three-dimensional, spatially growing wave

disturbances is investigate&I using linear stability analysis. The mixing layer is

formed by two parallel streams with different gases and the flow is assumed to be

inviscid and non-reacting.

For unbounded mixing layers, the effects of the free-stream Mach num-

ber, velocity ratio, temperature ratio, gas constant (molecular weight) ratio and the

ratios of specific heats on the linear spatial instability characteristics of a mixing

layer are determined. A nearly universal dependence of the normalized maximum

amplification rate on the convective Mach number is found for two-dimensional

spatially growing disturbances. The effects of the mean flow profiles on the insta-

bility behavior of the mixing layers are also studied. It is shown that decreasing

the thickness of the total temperature profile relative to the mean velocity profile,

or adding a wake component in the mean velocity profile can make the normalized

amplification rate decrease slower as the convective Mach number increases for both

subsonic and supersonic convective Mach numbers.

For an unbounded mixing layer with subsonic convective Mach num-

bers, there is only one unstable mode propagating with a phase velocity C;, approx-

imately equal to the isentropically estimated convective velocity of the large scale

structures u. As the convective Mach number approaches or exceeds unity, there



vii

are always two unstable spatial modes. One is with a phase velocity C ,, < U (slow

mode) and the other is with a phase velocity C~m > u* (fast mode). For the low

supersonic convective Mach numbers, the fast mode is more unstable than the slow

mode when the heavy gas is on the low speed side and the slow mode is dominant

when the heavy gas is on the high speed side.

The effect of parallel flow guide walls on a spatially growing mixing

layer is also investigated. It is shown that, in this case, if the convective Mach

number exceeds a critical value of approximately unity, there are many supersonic

unstable modes. The maximum amplification rates of mixing layers approach an

asymptotic value and this maximum amplification rate increases to a maximum

value and decreases again as the distance between the walls decreases. For a mixing

layer inside parallel flow guide walls, the growth rate of three-dimensional modes

is larger than the corresponding two-dimensional mode at high convective Mach

numbers. But the growth rate of two-dimensional supersonic instability waves has

a larger value than their three-dimensional counterparts for a mixing layer inside a

rectangular duct (Tam & Hu [1988], [1989]). Contour plots of the pressure pertur-

bation fields for both unbounded and bounded mixing layers indicate that there are

waves propagating outward from the mixing layer along the Mach angle, and that

the walls provide a feedback mechanism between the growing mixing layer and this

compression/expansion wave system. The bounded mixing layers are more unstable

than the corresponding free mixing layers for supersonic convective Mach numbers.

The streaklines of the flow confirm that the spreading rate of the mixing layer is

unusually small for supersonic disturbances.

0
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CHAPTER 1

INTRODUCTION

1.1 Historical Background

The aims of the study of hydrodynamic stability were to find how

and when laminar flows break down and undergo transition to turbulence or some

other laminar flow. The basic problems of hydrodynamic stability were studied and

formulated by Helmholtz [1868], Kelvin [1871], Rayleigh [1880] and Reynolds [1883]

at the end of the nineteenth century. The hydrodynamic equations were linearized

by assuming that the disturbances of the flows were infinitesimally small. The

method of normal modes was used. Vivid descriptions of the problems were given

by Reynolds through his series experiments on the instability of flow in a pipe.

The first analytic study of two-dimensional hydrodynamic stability

was made by Helmholtz [1868] and Kelvin [1871]. They considered the basic flow of

* incompressible, inviscid fluids in two horizontal parallel infinite streams of different

velocities and densities, one stream above the other, and solved the problem of the

instability of a wavy disturbance over the surface of discontinuity. It is now called

the Kelvin-Helmholtz instability. Later, Rayleigh [1913] studied the instability of

incompressible, inviscid parallel flows with continuous velocity distributions across

the flows. An important result of his studies is the finding that the existence of an

* inflection point in the basic velocity profile is a necessary condition for instability.

0
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This result was further enhanced by the work of Tollmien [1935]. He pointed out

that this "inflection-point criterion" is not only necessary but also sufficient for

flows with a symmetrical or a boundary-layer type velocity distribution. Further

development, clarification and physical interpretation of these general results were

given by Lin [1944, 1955].

As a result of the increasing importance of the phenomena of gas 0

flow at high speeds, linear stability investigations have been extended to include

the effect of compressibility. The first attempt to develop a compressible stability

theory was made by Kuchemann [1938]. He studied the stability of a piecewise 0

linear velocity profile representing a boundary layer in a compressible fluid. Later

on, the stability of tangential discontinuities in a compressible fluid was treated by

Landau [1944]. He showed that tangential discontinuities are stable with respect to 0

infinitesimal disturbances.

Important theoretical investigations of the stability of the compress-

ible laminar free and bounded mixing layers to infinitesimal wave disturbances were

made by Lees & Lin [1946]. Their study was in the form of an extension of the

principles and techniques already formulated for the study of the stability of incom- •

pressible laminar flows to compressible laminar flows. They gave a general stability

criterion in terms of the gradient of the product of density and vorticity, analogous

to the Rayleigh-Tollmien criterion for the case of an incompressible fluid. The dis- 9

turbances outside the mixing layers were classified by Lees & Lin as "subsonic,"

"sonic" and "supersonic" disturbances, according to whether the phase velocity of

the wavy disturbance in the direction of the free stream relative to that of the fluid 0

I I
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is less than, equal to, or greater than local velocity of the sound. Also, a detailed

consideration to an inviscid theory of compressible mixing layers was given and the

possibility that the disturbances in a compressible flow can produce a turbulent

transition or lead to the formation of a shock was also pointed out by Lees & Lin.

The instability of inviscid compressible free mixing layers with respect

to two- and three-dimensional, temporally growing disturbances was considered by

Lessen, Fox & Zien [1965, 1966] for both subsonic and supersonic disturbances.

Under the assumption that the flow was iso-energetic, ht = h* + u* 2 /2 = constant,

they found that the flow is unstable with respect to supersonic disturbances, al-

though the amplification rate is smaller than for subsonic disturbances and the

increase of the angle between the disturbance wave number vector and the principle

flow direction tends to increase the instability. With spatially growing disturbances,

Gropengiesser [1970] studied this instability problem using the Crocco-Busemann

relation, ht = h* + u*2/2 = fn(u*), for the mean temperature profile, which would

be discussed in detail later, and using the compressible laminar boundary layer ve-

locity profile for the mean velocity distribution across the mixing layers. He carried

out the inviscid instability calculations at various free stream Mach numbers and

temperature ratios. He found the existence of a second unstable mode and showed

that a change in the character of the disturbance may involve the amplification of

a second mode. He also noted the high growth rate of three-dimensional waves

at high Mach numbers. In order to simplify the stability problems, Blumen and

Drazin et al. [1970, 1975, 1977] studied the stability problem by assuming that the

thermodynamic state of a compressible, inviscid, free mixing layer is constant. They

showed that two-dimensional disturbances are unstable at all values of the Mach
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number and that there exists a second unstable supersonic mode.

A critical review of the experimental data for developed compressible

free turbulent mixing layers was given by Birch & Eggers [1973]. They indicated

that although some inconsistency exists among the various experimental investiga-

tors, there is a definite trend of decreasing growth rate with increasing free stream

Mach number. Experimental evidence of large scale structures in two-stream super- 0

sonic turbulent mixing layers were given by Chinzei et al. [1986], by Papamoschou

& Roshko [1986, 1988] and Papamoschou [1986, 1989]. Papamoschou & Roshko

suggested the convective Mach number M, as the appropriate parameter scaling S

the effect of compressibility. This is defined, for each stream, as:

MI 4 Mc2 U U u; (1.1)

where u*, u2 and al, a; are the free stream velocities and speeds of sound. The

quantity u is the convective velocity of the large scale structures. Coles [1981]

pointed out that stagnation points must exist in these large scale structures. The

convective velocity u, was estimated by Papamoschou & Roshko assuming that the

dynamic pressures match at stagnation points in the flow (Coles [1985], Dimotakis

[1986]). For compressible isentropic flow with equal static pressures in the two free

streams, e.g., Papaxnoschou & Roshko,

(1 + 72 1 M I- = 2 + 72- 2 M , (1.2)

where f1, 72 are the ratios of the specific heats of the two streams. If 0yi and -y2 are

equal, u is given by

a; + a; ' (1.3)

.0
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which, for equal static free stream pressures, reduces to the incompressible ex-

pression (Dimotakis [1986]). They suggested that the normalized growth rate of

a compressible mixing layer (unity for incompressible flow) might be expressible

as a universal function of the convective Mach number Mj 1 which is valid over a

wide range of velocity and temperature ratios of a mixing layer. They also indi-

cated that the normalized growth rate decreased significantly with increasing M 1 ,

for subsonic Mcl, and reached an asymptotic value for supersonic convective Mach

numbers. The same qualitative behavior had been found by Bogdanoff [1983] in his

analysis of several previous experimental investigations of supersonic mixing layers.

Using linear spatial instability theory, Ragab & Wu [1988, 1989] stud-

ied the influence of velocity ratio on the stability characteristics of compressible free

mixing layer. They also investigated the effect of the convective Mach number on

the growth rates of mixing layers. Their results indicate that the convective Mach

number is a parameter which correlates compressibility effects on the spreading

rate of mixing layers. Jackson & Grosch [1988, 1989] presented their results of a

study of the inviscid spatial instability behavior of compressible free mixing layers

with one stream moving and the other stream stationary. They showed that if the

Mach number of the moving stream exceeds a critical value, there are always twoS
groups of unstable waves. One of these groups is fast with normalized phase speeds

greater than 1/2, and the other is slow with phase speeds less than 1/2. They

also showed that three-dimensional modes have the same general behavior as two-

dimensional modes, but with higher growth rates over some range of propagation

direction. Recently, Sandham & Reynolds [1989a, 1989b] investigated compressible

mixing layers using both linear theory and direct simulation. They showed that lim-
9

9
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ear theory can be very useful in understanding the physics of free mixing layers and

the growth rates of the developed plane mixing layers and that three-dimensional

modes are dominant in an unbounded high-speed mixing layer above a convective

Mach number of 0.6.

For a compressible boundary-layer, the study of linear instability the-

ory carried out by Mack [1969, 1984] indicated that for supersonic disturbances there •

are two kinds of neutral waves, inflectional and noninflectional, and that there are

always unstable modes in boundary-layers. Mack also noted the high amplification

rate of three-dimensional waves at high Mach number.

For a mixing layer inside a rectangular channel, Tam & Hu [19881
0

showed that the coupling between the motion of the mixing layer and the acous-

tic modes of the channel produces new instability waves for the spatially growing

mixing layers. Greenough et al. [1989] considered the effects of walls on a confined

compressible, temporally growing mixing layer. They showed that there are two 9

general types of instabilities: confined Kelvin-Helmholtz modes and supersonic wall

modes. A class of highly amplified supersonic disturbances are found by Macaraeg

& Streett [19891 for high-speed, temporally growing bounded shear flows at high •

values of the streamwise wave number.

1.2 Present Research Objective

The present studies were undertaken in order to investigate the linear 9

• • • •
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instability behavior of both unbounded and bounded compressible plane mixing

layers with respect to two- and three-dimensional, spatially growing wave distur-

bances. The purpose of this study is to understand the effect of compressibility on

spatially growing plane mixing layers and also the effect of the mean flow profiles

on the instability behavior of the mixing layers. The mixing layer is formed by two

parallel streams with different gases and the flow is assumed to be inviscid and non

reacting.

The convective velocity is estimated by the phase velocity of the most

unstable mode CPn, since we only consider the amplified disturbances (ai < 0).

Therefore, the convective Macl number for each stream is defined here as:

Mei a M2 = Cm -au (1.4)

For these amplified disturbances, we think the definition given by Eq. 1.4 is appro-

priate since we are tracking the most unstable mode. Mack [1975] used the phase

velocity of the neutral mode c~r as the convective velocity in his stability analysis

of the existence of many supersonic neutral waves of supersonic boundary layer.

Sandham & Reynolds [1989b] proposed that the large-scale structures found in the

mixing layer are associated with neutral instability modes. Therefore, they used

the phase velocity of the neutral mode c~r to estimate the convective velocity of the

large-scale structures in the mixing flow.

For a compressible mixing layer comprised of different gases, the in-

stability calculations were carried out for inviscid wave disturbances, i.e., the effect

* of viscosity was neglected in the disturbances, and the mean flow profiles were
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assumed to vary smoothly across the mixing layer. The disturbances were also as-

sumed to have small amplitudes. Therefore, the linearized equations could be used.

The main flow was assumed to be quasi-parallel, i.e., it possessed only a velocity

component in the direction of the flow. These assumptions have been justified by

previous investigators (e.g. Lin [1955]). The assumption of parallel flow provided

an even better approximation in the case of compressible mixing layers, since the

growth rate of the mixing layer became smaller with increasing free stream Mach

number M 1 .

The linearized equations for inviscid disturbances were derived and

the eigenvalue problem was formulated in Chapter 2. The range of unstable frequen-

cies and wave numbers was numerically calculated using a Runge-Kutta method

combined with a shooting technique. The mean flow distributions were either as-

sumed or derived from the boundary layer equations for compressible mixing flow.

The details of these mean flow profiles were discussed in Chapter 3.

For compressible, unbounded mixing layers, the influence of free

stream Mach number, velocity ratio, temperature ratio and gas constant (molecular

weight) ratio, and ratios of the specific heats on the linear spatial instability char- 0

acteristics of a mixing layer were investigated. The effect of the convective Mach

number on the growth rate of the mixing layers was studied. Numerical calculations

of linear spatial instability characteristics of the mixing layers with different combi-

nations of the free stream Mach number, velocity ratio, temperature ratio and gas

constant ratio were performed in which the free stream Mach number ranged from

0 to 11, the velocity ratio varied from 0.25 to 0.75, the temperature ratio varied

• 0
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from 0.2 to 5 and the gas constant ratio varied from 0.1 to 5. In order to assess

the sensitivity of the details of the mean flow profiles on the instability behavior of

the compressible mixing layers, an initial mean velocity profile with a wake compo-

nent and a total temperature profile with a different thickness relative to the mean

velocity profile were also considered.

Finally, for a mixing layer inside parallel flow guide walls, the effects

of walls and the distance between the walls on a spatially growing mixing layer were

investigated. For a given distance between the parallel flow guide walls, the linear

spatial instability characteristics of mixing layers were calculated for different free

stream Mach numbers. Contour plots of the pressure perturbation fields indicate

that there are waves propagating outward from the mixing layer along the Mach

angle, and that reflections of the compression/expansion waves caused by walls

provide a feedback mechanism between the growing mixing layer structures and the

wave system for supersonic convective Mach numbers. Also, the flow patterns of

the mixing layers were obtained by calculating the streaklines of the mixing layers.

9

I
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CHAPTER 2

MATHEMATICAL FORMULATION

The objectives of this chapter are to derive the linearized disturbance

equations for inviscid, compressible plane mixing layers and to formulate the eigen-

value problem of the instability of the mixing layers. The mixing layer is formed

by two parallel streams with different perfect gases and is subjected to a two-

dimensional spatially growing wave disturbance.

2.1 Equations for Small Disturbances

Consider a two-dimensional compressible mixing layer formed by two

parallel streams. Assume that the fluids on each stream of the mixing layer are

inviscid and non re!acting. In the absence of external forces, the general equations

of a two-dimensional, inviscid, compressible flow of a perfect gas can be written in

Cartesian co-ordinates as follows:

(a) Equation of continuity:

- + P x I +- = 0 (2.1)
Dt* ax* Oy*I

(b) Equations of motion:

Ou' 8u" .8u" 1 OpS+ *,,'u + v a* = -(2.2)
-8* p a --

I I I I I
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Ov* 8vO* ,Ov* 108p*
-- + u* O--- + v* - (2.3)a57 Y ay*

(c) Equation of energy:

0_) X (a -+- (2.4)p" ,," + uO--- + v O8-' = \Oz Oy' '

(d) Equation of state:

p= P*R*T °* (2.5)

All quantities in these equations are dimensional, as defined in the List of Symbols.

Since the compressible mixing layers we considered are formed by two

4* different ideal gases, according to the Gibbs-Dalton law, the pressure in a mixture

of different gases is equal to the sum of the partial pressures of the different gases,

p* = p*R*T* = p + p2 = p R T* + p2R2T*, (2.6)

and the corresponding expression for enthalpy can be written as

h*= xlh + x 2h; = (XIc;j + X2C; 2 )T* , (2.7)

where Xi is the mass fraction of species 1 of the gas mixture. The mass fraction,

X2, of species 2 is equal to 1 - X1, since only two species exist in the mixing layer.

Thus Eqs. 2.6 and 2.7 yield

R" =xlR + (1 - xl)R, (2.8)

c;= XIC;I + (1 - XI)C; 2  (2.9)

For perfect gases, a similar expression can be obtained for the specific heat at

constant volume c,], i.e.,

c. = XIC: 1 + (1 - X1)c: 2 . (2.10)
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Since the mixing layer is formed by two different gases, Eqs. 2.1 to 2.5 do not form

a complete set. They have to be supplemented by the species transport equation,

which, in the absence of molecular diffusion, is given by

9X1 fix1 .ixi
ay*+ + 0. 2i .1)

We consider a time-independent basic flow and a small amplitude,

time-dependent disturbance. For a parallel flow, the basic steady state is of the

form

= Q* , (2.12) 0

where i. denotes the unit vector in the x* direction. The general quantity of the

flow can be expressed as

Q*(x*,y*,t*) = -U*(y*) + Q'(x*,y',t*), (2.13)

where Q t (y) is a mean flow profile, which will be discussed in Chapter 3, and Q' is a

small amplitude disturbance. By substituting Eq. 2.13 for each of the variables into

Eqs. 2.1 to 2.5 and Eq. 2.11 and neglecting terms quadratic in the small disturbance,

we obtain the linearized disturbance equations. With upper stream quantities as the
0

reference and the local layer thickness 6*(x*) as the length scale, the dimensionless

variables are defined as follows:

t = t'u"/*, X = ='/b° , Y Y

U = U*/Ul*, V = V*/Uj t ,

p = p'/p, T = T t /T 1*, R = R7/R1*,



13

p = P*/pl*, cp = cp*/cpi*, c. = c,v/c,1*.

The non dimensional parameters of the problem are the upper stream Mach number

M, = u /a , where a* is the speed of sound of the upper stream, and the ratio

of specific heats of the upper stream -yj = c* /c* 1 . The linearized dimensionless

disturbance equations are arrived at

Continuity:
apt ap+ + v1 "- + A a = 0 (2.14)
+at T Vd+ ay(5x ay/

Momentum:
au' ,au' ,d -- 1 ap' (2.15)
- -+ "x + y =- 1M1  

2 ax
(av' _o-' 1 ap' (.8

p, a"x) a1 (2.16

Energy:

PE T iaT' + 1dT' (au' +av' (217p ~ i:-3x + J =-(yi - 1) K~x+ .)(2.17)

State:
p' R' T'P, = -+= + (2.18)
p3 R T

Species transport:
ax1' aix1  ' 9 1
* + ii + v, a- = 0. (2.19)

In these equations, ii, ... , are dimensionless mean flow quantities and u',.. ., p'

are the corresponding dimensionless disturbances. Eqs. 2.14 to 2.19 form a sys-

tem of dimensionless linear partial differential equations for the disturbances. The

0
coefficients are known functions given by the steady mean flow profiles. After lin-

earization, the dimensionless expressions of Eqs. 2.8 to 2.10 become:

L2 + ,f2 R' = (1 - )x', (2.20)
0 R, R, R,

•
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CP= - P. C (1 (2.21)
CpL.1 _c.2pi X1

cv=- +" =l-X ~ ~ 1- (2.22)
Cvl CV1 CV

2.2 Normal Mode Solution for a Spatially Growing Mixing Layer

We consider here the disturbance to be a two-dimensional wave prop-

agating in the x-direction. The disturbance quantities in a suitably defined dimen-

sionless form can be expressed as:

u1 = {f(y),aO(y)} exp[ia(x - ct) (2.23)

p1,T1,'= {r(y),9(y),ir(y)} exp [ia(x - ct)]; (2.24)

x = ?7(y) exp [ ia(x - ct) ]; (2.25)

where, for a spatially growing layer, a is a dimensionless complex wave number

and c is a dimensionless complex wave velocity. Each component travels with the

dimensionless phase speed Cp = W/ar (w = ac) and grows or dies away in x like

exp(-aix). Therefore the disturbances are amplified, neutral, or damped, according

to whether ai < 0, ai = 0, or ai > 0, respectively. It is to be understood that the

real part of the disturbances represents the physical quantity in each case.

2.3 Differential Equations for the Complex Amplitude Functions

Using normal mode solutions, we can separate the variables and re-

duce the linearized disturbance equations from the partial differential equations to
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ordinary differential equations. By substituting Eqs. 2.23 to 2.25 into Eqs. 2.14

to 2.19, we obtain a system of ordinary differential equations for determining the

amplitude functions f(y), 0(y), p(y), 0(y), 7r(y) and t/(y). These are:

Continuity:
i(i - c)r + L + p(if + €) = 0, (2.26)

* +y

Momentum:

P[ + i(o - c)fl = (2.27)

Idy . yM,

pa 2i(ii _ C)- (2.28)

Energy:

* ,,[/(f -c)0 + A -(T1- 1)(if+C), (2.29)

State:
r r 6 1 R 2

+ = 77 (2.30)
~3 T R R ,

Species Transport:

i(ii - c)77 + d -0, (2.31)

where dots denote d/dy. These equations for the amplitude functions can be reduceda
to the following second-order differential equation for the pressure disturbance.

All the other variables can be expressed in terms of 7r and ir as follows:

1 r + ir dii 2.3
f M12' - c) if + 2(-__ c)2 , (2.33)
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= 1 iM1
2 a2 (f - c) ' (2.34)

etc.

2.4 Boundary Conditions

Two types of boundary conditions will be considered. One is for

unbounded mixing layers and the other is for bounded mixing layers. These will be

discussed below.

2.4.1 Unbounded Mixing Layer

The general configuration of a free mixing layer and the variables

involved are summarized in Fig. 2.1. The boundary conditions of the eigenfunction

7r(y) are found from Eq. 2.32. With y --+ ±oo, the mean quantities i(y), T(y), R(y)

and c.(y) are constants and their corresponding derivatives are zero. In that limit,

Eq. 2.32 becomes

i - A±27r = 0 (2.35)

with

A 2 = a 2 [1 - M 1
2 (l - c) 2 ] =A+ = A+r + iA+i (2.36)

A_2 = a2 - vM/2(Ur (-)2 C )]r/Rr A = A r + iA_,, (2.37)

Rr T [Crl~r+ (- - 0
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and the solution for large Iy[ are of the form

7r = A± exp ( A±y), (2.38)

where A± is a complex constant.

Since we are only considering the case of amplified spatially growing

disturbances (ai < 0), the boundary conditions for both subsonic and supersonic

disturbances require that 7r(y) must be bounded as y -. =oo. To define A± uniquely,

we set the real part of A±=A±r > 0 to obtain

y = y+ *+oo r = A+ exp ( -A+y ', (2.39)

y = y-0 "-oo r = A. exp ( +A.y), (2.40)

where

= (IA±I + Air) +isign(A±j) (2.41)

2.4.2 Bounded Mixing Layer

* The general configuration of a mixing layer inside parallel walls is

shown in Fig. 2.2. b is the dimensionless mixing layer thickness defined in a

boundary-layer sense, i.e.,

0 - U()< and U2 - U(-) (2.42)
U1  U 1

where e is taken as 0.002. Note that 2d is the dimensionless distance between the

walls.

0
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In the regions of 6 < y < d and -d < y < -6, the flow is effectively

uniform, i.e., the mean flow quantities, such as velocity, temperature, etc. are

constants, and Eq. 2.32 reduces to Eq. 2.35. In order to satisfy the boundary

conditions at the walls, the vertical velocities of the disturbances should vanish on

the solid boundaries and we must have ir(d) =r(-d) = 0. The analytic solutions

in Regions 1 and 2 then are

7r = Acosh[A+(d-y)], 7r Bcosh[A _(d+y)], (2.43)

where A and A-_ are already given by Eqs. 2.36 and 2.37. A and B are complex

constants to be determined by matching to the inner flow region.

2.5 Formulation and Numerical Treatment of the Eigenvalue Problem

The eigenvalue problem of the instability of mixing layers with spa-

tially growing disturbances is defined as follows. We take a real value of the distur-

bance frequency w and seek the complex eigenvalue a = ar + iai. The dispersion

relation can be written in the form

F(a,w) = 0. (2.44)

For a given real disturbance frequency w, the complex eigenvalue a is to be deter-

mined such that the eigenfunction ir(y) of Eq. 2.32 satisfies the boundary conditions.

This gives a well-defined eigenvalue problem for the amplified disturbances a, < 0.

A Runge-Kutta method combined with a shooting technique was used to solve this

eigenvalue problem. 0

II I I I
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For an unbounded mixing layer, Eq. 2.32 is integrated numerically

for a fixed value w starting from the lower boundary y.oc, where the boundary

condition is given by Eq. 2.40, to the upper boundary y+.. This yields 7r(y+, )

and ir(y+,,). By matching the upper boundary condition given by Eq. 2.39, the

sum S(ar,ai) = ir(y+.) + \+7r(y+.) is evaluated and improved values of a are

calculated from the approximated zeros of S(ar, ai) by linear interpolation. This

procedure is repeated until ISI is sufficiently small.

For a mixing layer inside parallel flow guide walls, we use the analytic

solution in Region 2 of Fig. 2.2 as a starting solution and integrate Eq. 2.32 numer-

ically from y = -6 to y = 6. The correct a is obtained, for a given w, by matching

the numerical solution to the analytic solution at y = 6.

The computations, for both free and bounded mixing layers, were

performed using the Runge-Kutta-Fehberg method with automatic estimation of

local error and step size adjustment. An error control of 10' is used for the

integrations, iterating until the eigenvalue converges to 10-6.
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CHAPTER 3

MEAN FLOW QUANTITIES

In a finite thickness mixing layer, all mean quantities, such as veloc-

ity, density, temperature, gas constant (molecular weight), concentration and the

ratio of the specific heats, vary gradually across the mixing layer. We consider the

two-dimensional motion of a stream of fluid with the velocity u , density p*, tem-

perature T,*, gas constant R , ratio of the specific heats -y,, viscosity J' and thermal

conductivity kl*, over a parallel stream described by the corresponding parameters

with subscript 2. The main flow is considered to be quasi-parallel and the fluids in

the two parallel streams are assumed non-reacting.
0

A two-dimensional compressible steady mixing flow, comprised of dif-

ferent perfect gases, can be modelled by the compressible boundary layer equations

for gas mixture. We take the axis of x* to be in the direction of motion of the free

streams, and the axis of y* to be in the transverse direction. The velocity compo-

nents in these directions are u* and v*. The origin is taken as the point at which

the two fluids first come in contact (see Fig. 2.1). For a steady parallel mixing flow,.

the disturbance term Q' in Eq. 2.13 is zero, therefore, Eq. 2.13 becomes

Q =-'(y*). (3.1)

With zero pressure gradient throughout the entire flow region, the global boundary-

layer equations for compressible steady mixing flow are S

• I I I
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Continuity equation:
a(p*u*) a(p*v*)

'9* + ay 0 (3.2)ax * + y*

Momentum equation:

p* (*au. + . )u. a (*au* (3.3)
p x* - y- -  *-- *y

Energy equation:

a ,,AL r8Y*) + ( r,__, au*y+ .  (3.4)ay* P lr ay* P r 1y* Sc P r Oy*)

Equation of state for ideal gases:

p= p*R*T* (3.5)

Species transport equation:

p * .x + PO * *:xi = a L D*p*X-i (3.6)
ax* pV ay\ ay* J (3.6)

where /* is the viscosity, Pr = u*c;,/k* is the Prandtl number, Sc = p/p*D* is

the Schmidt number, k* is the thermal conductivity, and D* is the binary diffusion

coefficient.

3.1 Mean Velocity Distribution

The numerical calculation of the mean velocity distribution for an

incompressible mixing layer with U2/UI # 0, comprised of the same gases was first
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provided by Lock [19511. By introducing a stream function V*, which satisfies the

continuity equation of compressible steady flow Eq. 3.2 identically, i.e.,

ay..* a ' (3.7)p'u= y* ' '* g'9

and a transformation proposed by L. Howarth [1948],

y* = f dy*(38 ~(3.8)

0

the calculation of the mean velocity distribution for compressible steady mixing

flows is converted into the corresponding calculation for incompressible flows, if we

assume that the viscosity y* of the gas is approximately a linear function of the

temperature T* (Gropengiesser [1970]). It was found by Gropengiesser [1970] that

the dimensionless velocity distribution ii(y) for compressible steady mixing flows

can be well approximated by the generalized hyperbolic tangent profile with three

free constants,

ii(Y)=1 - - tanh ic (y - yl))]K2
, (3.9)

with K1 = 0.307257, K2 = 3.695640, Yi = 2.127137. The dimensionless variable y is

equal to Y*/6*(x*), where b*(x*) is the local layer thickness. Therefore, the main

flow is considered to be quasi-parallel. 0

In order to simplify the problem, for the mixing flows considered in

the current numerical calculations, we assume that the dimensionless mean velocity

profile is described by a hyperbolic tangent profile of the form

(y) = (y) + - (y)1, (3.10)
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where u, = u2 /u 1 is the velocity ratio across the mixing layer, and

((y) = 11 + tanh(y)]. (3.11)

See mean velocity profiles ii(y) with different values of u, in Fig. 3.1. It has

been known from previous investigators that the percentage difference in ampli-

fication rate of the case with a hyperbolic tangent profile relative to the case with a

boundary-layer profile is small if the value of the velocity ratio u, is not too small.

It is known that there is a wake component in the initial evolution of

the mixing layer (e.g. Lang [1985]). For the incompressible mixing layer, Kooches-

fahani & Frieler [1987] investigated the linear spatial instability behavior of a mean

velocity distribution with a wake component. They showed the existence of two

unstable modes, which they called shear layer mode and wake mode. In order to

investigate the effect of the wake component on the instability behavior of the com-

pressible mixing layer, we assumed that the mean dimensionless velocity profile is

composed of the usual hyperbolic tangent profile plus a wake component (owing to

the splitter plate) represented by a Gaussian distribution of the form

ii(y) = ((y) + u,- [ 1 - ((y)] - w exp(-y 2 ) , (3.12)

where w is the normalized wake deficit, as was assumed in Koochesfahani & Frieler

[1987]. Profiles with different values of w are plotted in Fig. 3.2.

0
3.2 Mean Temperature Distribution

0 Two different kinds of temperature profiles have been considered. For

0
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the flow comprised of same gases, according to Crocco [1932] and Busemann [1935],

it is possible to satisfy the energy equation identically by assuming that the tem-

perature T* is dependent only upon the velocity component u* taken parallel to

the direction of the flow. Following the Crocco and Busemann's idea, we assume

that the total enthalpy h = h* + u*2/2 depends only on the velocity component u*

for the mixing flows comprised of different gases, i.e. h7 = fn(u*). By substituting

the expressions hi = h,(u*) into the energy equation 3.4 and by assuming that the

Prandtl number Pr = c/k* and Schimdt number Sc = /p*D* are equal to

unity, i.e.,
Pr=1

SC=1,(3.13)

and using the momentum Eq. 3.3, Eq. 3.4 can be reduced to

d2h d2(h * + u 2 /2) -0. (3.14)
du*2 - du*2

Thus the mean static temperature profile can be represented by

= jj*2 (y*) + c, i*(y*) + C2 (3.15) 9
2

where cl and c2 are constants determined by the boundary conditions on the mean

temperature profile and we also assumed that c; 3 fn(T*) within the range of the

temperatures in the flow and c; is only a function of the fraction of species of the

gas mixture. The dimensionless mean temperature profiles T (y) with a fixed M1 ,

or a fixed temperature ratio T2 /TI, are shown in Figs. 3.3 and 3.4, respectively.

Equations 3.10 and 3.15 yield the dimensionless total temperature profile Tt(y) for

the mixing flows formed by same gases,

Tt(y) = ((y) + Ttr [ 1 - ((y)J] (3.16)

I I I I0
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where Tt, = Tt2 /Ttl is the ratio of the total temperature across the mixing layer.

The profile given by Eq. 3.16 has the same thickness relative to the dimensionless

mean velocity profile given by Eq. 3.10. A question, then remains as to how this

relative thickness affects the instability behavior of the compressible mixing layer.

To consider this question, ((y) is replaced by ((y/a) in Eq. 3.16, where a adjust the

thickness of the total temperature profile relative to the velocity profile. The dimen-

sionless total temperature profiles as a function of the total temperature interface

thickness a axe shown in Fig. 3.5.

An alternate dimensionless mean temperature profile considered was

obtained by assuming that the profile can also be represented by a hyperbolic tan-

gent profile, i.e.,

S(Y) = ((y) + Tr[ 1 - ((y)], (3.17)

where Tr = T2 /T1 is the ratio of the temperature across the mixing layer. Com-

paring Eq. 3.17 with Eq. 3.15, we see that the profile given by Eq. 3.17 is only a

* function of the temperature ratio T,. Therefore, for both subsonic and supersonic

flows, we have the same dimensionless mean temperature profiles for the same Tr

(see Fig. 3.6).

0

3.3 Mean Concentration Distribution

Since the mixing layer we considered may be formed by different gases.

the mean mass fractions , and h may vary gradually across the mixing layer.

* just like the mean velocity and temperature. Following the way we specify t he
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dimensionless mean velocity, we assume that the mean concentration profile i(y)

is also described by a hyperbolic tangent profile of the form

1
2,(y)= [1 + tanh(y)] . (3.18)

Since j + X2 = 1, Eq. 3.18 yields

2(Y) [1 - tanh(y)]. (3.19)

40

Substituting Eq. 3.18 into Eqs. 2.20 to 2.22, the dimensionless mean gas constant

and specific heat profiles can be written as:

W(y) = ((y) + R, 1 - ((y)J, (3.20)

Ep(y) = ((y) + cPr[1 - ((y)], (3.21)

ev(y) = ((Y) + c"r[1 - ((y)], (3.22)

where ((y) was given by Eq. 3.11, Rr, and cp,, c,,, are the ratio of the gas constant

and the ratios of the specific heats at constant pressure and at constant volume

respectively. The dimensionless mean profile W(y) is shown in Fig. 3.7 for different

values of R,.

$l • •
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CHAPTER 4

THE INSTABILITY BEHAVIOR OF A COMPRESSIBLE

FREE MIXING LAYER

In this chapter, the linear, spatial instability behavior of a compress-

ible, laminar, mixing layer, comprised of different gases, is investigated with respect

to two- and three-dimensional, spatially amplified, wave disturbances. The fluctu-

ating amplifying flow is assumed to be inviscid and non reacting. The perturbations

in the flow are taken as possessing small amplitudes. All flow quantities mentioned

in this chapter are defined as dimensionless quantities, using the dimensionless vari-

ables defined in Chapter 2. The effects of free stream Mach number, velocity ratio,

temperature ratio, gas constant (molecular weight) ratio and the ratio of specific

heats on the linear spatial instability characteristics of the compressible mixing lay-

ers are examined. The behavior of eigenfunctions of the disturbed mixing layers is

discussed for both subsonic and supersonic disturbances. The instability character-

istics of compressible mixing layers with spatially growing oblique wave disturbances

* are also studied. The influence of adding a wake component to the mean velocity

profile and decreasing the thickness of the total temperature profile relative to the

mean velocity profile on the linear spatial instability behavior of compressible mix-

* ing layers is also considered.
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4.1 Free Stream Conditions 0

The instability characteristics of compressible mixing layers can be

calculated numerically using Eq. 2.32, with given boundary conditions and mean

flow conditions. The mean flow distributions of mixing layers were already described

in Chapter 3. For a plane mixing layer having the mean velocity profile Eq. 3.10,

the mean temperature profile Eq. 3.15 and the mean concentration profile Eq. 3.18, 0

the instability behavior of mixing layers with two-dimensional, spatially growing

disturbances was studied in the range of free stream Mach number 0 < M 1 < 11.0,

velocity ratio 0.25 < u2 /u1 <_ 0.75, temperature ratio 0.2 < T2 /T 1 < 5.0, gas 0

constant ratio 0.1 < R 2/R, < 5.0 for given ratios of specific heats 7'1, 7Y2. The lists

of the combinations of the free stream conditions described above are presented in

Tables 4.1 - 4.3.

The mean temperature distribution across the mixing layer is also

approximated by a hyperbolic tangent profile Eq. 3.17. The mean flow conditions

for this hyperbolic tangent mean temperature profile are given in Table 4.4.

u I I II I
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Table 4.1 The free stream conditions for mixing flows formed by the same gases

R 2 /R 1 = 1.0, i1 1.4, 72 1.4
Case M, U2/u_ T2_/_TI

1 0 - 2.5 0.00 1.00
2 0 - 3.0 0.25 0.50
3 0 -- 3.5 0.25 1.00
4 0 -+ 4.0 0.25 1.50
5 0 -- 4.0 0.50 0.20
6 0 - 4.5 0.50 0.50
7 0 - 5.5 0.50 1.00
8 0 --* 5.5 0.50 1.50
9 0 -+ 8.0 0.50 5.00

10 0 - 9.0 0.75 0.50
11 0 -- 10. 0.75 1.00
12 0 -- 11. 0.75 1.50

Table 4.2 The free stream conditions for different values of R 1 and R 2

T2TI= 1.0, 7yj = 1.4, 72 = 1.4
Case k//" "2/u 1 R21/R1

13 0 -'-4.0 0.50 0.20

14 0 "* 5.0 0.50 0.50
•15 0-"- 8.0 0.50 5.00

* Table 4.3 The free stream conditions for different values of -yj and 72

U2/Ul = 0.5, T2 /T = 1.0, R 2 /Rl = 1.0
Case M, ^7i 72

16 0 -- 5.0 1.67 1.40
* 17 0"*5.5 1.40 1.67
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Table 4.4 The free stream conditions for hyperbolic tangent mean temperature

distribution

R21RI = 1.0. -yi = 1.4, -yi = 1.4
Case M, u2/uI T2/T 1

18 0 -- 4.5 0.50 0.67
19 0 - 5.0 0.50 1.00
20 0 5.5 0.50 2.00

The instability characteristics were calculated for each combina-

tion of the mean flow conditions, yielding the most unstable eigenvalue am

(am = arm + i aim), its corresponding frequency Wm and phase velocity

Cpm = Wrn/arm . (4.1)

The convective Mach numbers -VIM , M, 2 , corresponding to these spatially growing

waves, can be then obtained from Eq. 1.4.

4.2 Effect of the Free Stream Mach Number M1 I

The inviscid solutions of the instability characteristics of compressible

mixing layers were calculated for various free stream Mach numbers M, for a fixed

velocity ratio u2 /ul, temperature ratio T2/T1 , gas constant ratio R 2 /R1 and ratio

of the specific heats 7yi, 72.

For a free mixing layer with subsonic convective Mach numbers, there

is only one group of unstable waves. The amplification rate -ai is shown in 
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Figs. 4.1a, 4.2a and 4.3a for Cases 2, 15 and 4 (see Tables 4.1 and 4.2), as a function

of the amplified disturbance frequency w and the free stream Mach number M 1 . The

maximum amplification rate -azm attains its biggest value for an incompressible

mixing layer (M 1 = 0) and falls off sharply with increasing free stream Mach num-

ber M 1 . The band of amplified frequencies becomes much narrower with increasing

free stream Mach number M 1 . These results are in agreement with Gropengiesser's

[1970] numerical calculations, who considered a laminar velocity profile with the
S

velocity ratio u 2 /u 1 = 0. It should also be noticed in Figs. 4.1a, 4.2a and 4.3a that

for a constant free stream Mach number M1 , the amplification rate -i increases

monotonically with increasing amplified disturbance frequency w, up to a maximum

value, and then drops off gradually to zero as the neutral disturbance frequency is

reached. The corresponding phase velocities C. = w/a, of these instability char-

acteristics are given in Figs. 4.1b, 4.2b and 4.3b against the amplified disturbance

frequency w for different free stream Mach numbers M 1 . The phase velocity C.

decreases with increasing amplified disturbance frequency w, down to a minimum

value, then increases slightly till the neutral disturbance frequency is reached. For

* a mixing layer with subsonic disturbances, the phase velocity of the most unstable

wave Cpm is shown in Fig. 4.4 as a function of the free stream Mach number M 1 .

From this figure, we can see that Cpm is independent of the free stream Mach num-

* ber M 1 . It is approximately equal to the isentropically estimated convective velocity

u, defined in Eq. 1.3, which depends only on the velocity ratio U2 /uI, temperature

ratio T2/T 1 , density ratio P2/p and the gas constant ratio R 2/R 1 for -yj = _Y2 (see

* Fig. 4.4).

As the free stream Mach number M1 approaches or exceeds a critical
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value Micr, the mixing flow becomes supersonic relative to its disturbances, which

means the convective Mach number Mc, or Mc 2 is greater than unity. Jackson &

Grosch [1988] showed that for a single stream (u 2 /uI = 0) supersonic free mixing

layer, there are always two groups of unstable waves. One is slow with a scaled

phase velocity less than 1/2, and the other is fast with a scaled phase velocity

greater than 1/2. They classified these two unstable waves as a slow supersonic

mode and a fast supersonic mode respectively. The linear instability investigations

performed here indicate that for a supersonic free mixing layer with the velocity

ratio u 2 /u 1 :A 0, there are also two unstable waves. One is with the phase velocity

Cp.. < uc (slow mode) and the other is with the phase velocity Cpm > Uc (fast

mode), where, as noted above, uc is the isentropically estimated convective velocity

(Eq. 1.3). The convective Mach number Mc is always greater than unity and Mc2

is usually smaller than unity for the slow supersonic mode and vice versa for the

fast supersonic mode. 0

The instability characteristics of supersonic mixing flows were calcu-

lated for both unstable supersonic waves. The amplification rate -ai is plotted in

Figs. 4.5a, 4.6a and 4.7a for Cases 2, 15 and 4 at a given free stream Mach number

M1  > Micr. The bands of the amplified disturbance frequencies w of the two

supersonic unstable waves overlap for some range of the frequencies. Therefore, two

unstable modes can exist at the same time for some given amplified disturbance fre-

quencies. The corresponding variation of the phase velocity is given in Figs. 4.5b,

4.6b and 4.7b. The phase velocities of the most unstable mode of these two super-

sonic waves Cpm are shown in Figs. 4.8a, 4.9a and 4.10a as a function of the free

stream Mach number M1 > MIen, for Cases 2, 15 and 4. From these figures, we

• I 0
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understand that the phase velocity of the most unstable mode Cp.. decreases for

a slow mode and increases for a fast mode with increasing free stream Mach num-

ber M 1. Therefore, the convective Mach number MAd or M,2 , defined by Eq. 1.4,

increases as the free stream Mach number increases. The maximum amplification

rates -aim of both supersonic unstable modes are shown in Figs. 4.8b, 4.9b and

4.10b as a function of the free stream Mach number M1 > Mic. For the low super-

sonic disturbances, the fast mode (M, 2 > 1) is more unstable than the slow mode

(M 1 > 1) when the heavy gas is on the low speed side (Case 2) and the slow mode

(Me 1 > 1) is dominant when the heavy gas is on the high speed side (Case 4 and

Case 15). This might suggest that if there is a shock wave in the mixing flow, the

shock would be borne by the heavy gas stream for the low supersonic convective

Mach numbers. If the convective Mach numbers are high enough, the maximum

amplification rate of the two supersonic modes are comparable. Therefore, the flow

might support shocks in both streams for the high convective Mach numbers.

For an incompressible mixing layer with a Blasius mean velocity pro-

file, Monkewitz & Huerre [1982) found that the maximum amplification rate -a,m

is nearly proportional to the velocity ratio A, defined as

A= (1 - U2/Ul)/(1 + u2/ul). (4.2)

Instead of using the Blasius mean velocity profile, the hyperbolic tangent mean

velocity profile Eq. 3.10 was used in the current calculations. Other mean flow

profiles of the mixing layers were obtained from Eqs. 3.15 and 3.18. Sandharn &

Reynolds [1989b] showed that the differences in the velocity profile are generally

small when the two streams have equal densities.
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In order to study the effect of the free stream Mach number M on

the function -aim(A), the maximum amplification rate -aim was computed as a

function of the velocity ratio A for the density ratio P2/P1 = 1.0, temperature ratio

T2/T = 1.0 and the ratio of specific heats -Y, = -2 = 1.4, at different free stream

Mach numbers M1 . The result shown in Fig. 4.11 indicates that the relation between

the maximum amplification rate -aim and the velocity ratio A is approximately

linear for incompressible mixing flow with equal density and temperature in both

mixing streams and that this linear relation becomes nonlinear as the free stream

Mach number M1 increases.

4.3 Effect of the Velocity Ratio u 2 /ul

It is known from turbulent mixing layer experiments that the mix-

ing layer spreading rates are significantly smaller for supersonic mixing flows than

those observed in subsonic experiments. Although the effect of compressibility on

the growth rate is the major cause for the lower spreading rate, which will be dis- S

cussed later in Section 4.7, the effect of other flow parameters, such as the velocity

ratio u 2 /ul should also be studied. Using linear spatial instability analysis, the ef-

fect of the velocity ratio U2/ul on the instability characteristics of mixing layers was S

considered. For a temperature ratio T2/T1 = 0.5, gas constant ratio R 2/R = 1.0

and a ratio of specific heats Y2 = = 1.4, the instability characteristics of the

mixing layers with different velocity ratios u 2 /ul (Cases 2, 6 and 10) are shown 0

in Figs 4.12a, 4.12b, 4.12c and 4.12d at different convective Mach numbers Nf 1

or M,2 , which can be obtained from Eq. 1.4. For both subsonic and supersonic

convective Mach numbers, the band of unstable frequencies w becomes wider and S
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the maximum amplification rate -aim becomes smaller as the velocity ratio u2 /u1

increases. The phase velocities CPM of these unstable waves are plotted in Fig. 4.13

against the velocity ratio u2/ul. Fig. 4.13 demonstrates that the phase velocity Cpm

is approximately a linear function of the velocity ratio U2/u 1 , at a given convective

Mach number Mc1 , or Mc2, and other free stream parameters T2/T, R 2 /R 1 , "7j

and -y2. The solid line in Fig. 4.13 is the isentropic estimate of the convective veloc-

ity, Eq. 1.3, u,(u 2/ul), which is independent of the convective Mach number Lcl

or Me 2. For subsonic convective Mach numbers, the slope of the linear function

Cpm(U2/Ul) is the same as the slope of the linear function uc(u2/ul). For super-

sonic disturbances, there are two groups of unstable waves. Even though the linear

relationship between the phase velocity Cpm and the velocity ratio u2 /u 1 exists for

each unstable wave, the slope of the function Cpm(U2/Ul) is greater than that of

the isentropic u,(u2 /ul) for the slow supersonic mode (Cp, < uc) and is smaller

for the fast supersonic mode (Cpm > u,).

4.4 Effect of the Density Ratio P2/P or the Temperature Ratio T2/T

Plane turbulent mixing between two parallel streams of different den-

sities was studied experimentally by Brown & Roshko [1974] for incompressible

mixing layers. The effect of density on turbulent mixing in incompressible flow was

investigated. A comparison of the results for the growth of the vorticity thickness

in incompressible flow against density ratio with the results of Maydew & Reed

[1963] in supersonic flow was made in Fig. 15 of Brown & Roshko [1974]. In the

current investigations of the linear instability behavior of inviscid mixing flows, lani-

inar mixing of the two parallel streams, comprised of the same gas (R 2 /R 1 = 1.0.
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7y = "f2), was considered. The effect of density on laminar mixing in both subsonic

and supersonic flows was studied. Figure 4.14 shows the maximum amplification

rate -aim as a function of the density r;tio P1/P2 for different free stream Mach

numbers M1 at the velocity ratio u 2 /u1 = 0. As the density ratio PI/P2 increases,

the maximum amplification rate -aim decreases monotonically for an incompress-

ible mixing flow (M1 = 0). For a compressible mixing flow, -aim increases up to a

maximum value, then decreases gradually with increasing density ratio p1 /P2. The

value of the density ratio Pl/P2, which corresponds to the maximum value of the

maximum amplification rate -aim, shifts to larger values of the density ratio P1 /P2

as the free stream Mach number M1 increases. The experimental results of the

growth in both incompressible and compressible mixing flows by Brown & Roshko

and by Maydew & Reed are also given in Fig. 4.14. The numerical calculations,

however, were based on linear instability theory while the experimental results were

obtained from the experiments of turbulent mixing layers. We can see that the

trend of the instability calculations is comparable to that of the experimental data.

It was shown in Section 4.2 that, for incompressible mixing layers

with equal density on both mixing streams and a hyperbolic tangent mean velocity

profile, the maximum amplification rate -aim is approximately a linear function of

the velocity ratio A = (1-u 2 /ul)/(1+u 2 /ul). For incompressible mixing layers, the

effect of the density ratio P2/P, on the maximum amplification rate -aim is shown

in Fig. 4.15. For a density ratio P2/P1 equal to, or less than, unity, the maximum

amplification rate -aim is still approximately a linear function of the velocity ratio

A and -aim rises with increasing density ratio P2/PI for 0 < A < 1. For a density

ratio P2/PI greater than unity, the function -aim(A) becomes nonlinear and the
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maximum amplification rate -aim falls with increasing density ratio P2/P1 for some

values of the velocity ratio A. For incompressible mixing flows, Dimotakis [1986,

19891 proposed an expression for the spatially growing mixing layer growth rate

given by
1j/2) (1 p/2)/(l + P1/2-- (U , Pr; M , -- 0) (1- U,)(1 + , ) 1- ( - ) (4.3)

X 2(1+ p /2 Ur) 1 1+2.9(1+ uT)/(1-tUr) '

where the coefficient C6 is independent of the velocity ratio Ur and/or the density

ratio PT. A comparison of the current numerical results for Pr = 7, 1/7 with the

experimental values of Brown & Roshko [1974] and with the Dimotakis [1986, 1989]

prediction for the spatially growing mixing layer at the value of C6 = 0.16 is made

in Fig. 4.16.

It was shown in Section 4.3 that the phase velocity of the most unsta-

ble mode Cp,,, of the mixing layer is approximately a linear function of the velocity

ratio u2 /u, at a given convective Mach number Mj1 or Mc2 and other free stream

parameters T2 /T1 , R2 /R 1 , 3y, and 72. Since the temperature ratio T2/T1 is one of the

important parameters for mixing layers, the effect of changing the temperature ratio

T2/T, on the phase velocity Cpm was examined. For a mixing layer, comprised of the

same gas (R 2 /Ri = 1.0, 71 = 72 = 1.4), the phase velocity Cpm was calculated as a

function of the velocity ratio U2/Ul, at a given T2 /T, and Mc, or Mc2 . The effect of

the temperature ratio T2/T1 on the function Cp,,,(U 2/Ul) is shown in Fig. 4.17a for

subsonic disturbances. The slope of the approximately linear function Cpm(U2/Ul)

decreases as the temperature ratio T2 /T increases. Also, it should be noted that

the phase velocity Cpm increases with increasing temperature ratio T2 /T, at a fixed

velocity ratio U2/tl. For a mixing layer (R 2/R 1 = 1.0, y = I2 = 1.4) with su-

personic convective Mach numbers, there are two supersonic unstable modes: the

0I
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slow supersonic mode with the phase velocity Cpm < uc, and the fast supersonic

mode with the phase velocity Cpm > u,. The functions Cpm(U2/Ul) for the two

supersonic unstable modes are given in Fig. 4.17b and 4.17c respectively. Compared

with the subsonic mode, the slope of the approximately linear function Cpm(U2/Ul)

is greater for the slow supersonic mode Cpm < u, and is smaller for the fast super-

sonic mode Cpm > u. The effect on the function Cpm(U2/Ul) of each supersonic

mode, however, is the same as that of the subsonic mode when the temperature
0

ratio T2 /T1 is changed.

4.5 Effect of the Ratios of Specific Heats -fl, 72

In experiments on gas phase turbulent mixing layers, a layer may be

formed by two gases with different ratios of specific heats yi and 72. The effect of

the ratios of specific heats 71, 72 on the instability characteristics of mixing layers

could be important. Here we studied this effect using linear instability analysis.

The instability characteristics of mixing layers were calculated for

Cases 7, 16 and 17. For incompressible mixing layers, the instability characteristics

are not affected by the difference between 7i and 72 (see Fig. 4.18a). For subsonic

mixing layers with M 1 # 0, the band of the amplified disturbance frequencies W

becomes wider and the maximum amplification rate -ai, increases if the high-

speed stream has the lower value of the ratio of specific heats (see Fig. 4.18b).

The effect of the ratios of specific heats yi, 72 on the instability behavior of the

slow supersonic mode Cp,,, < uc is the same as for the subsonic unstable mode
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(see Fig. 4.19a). On the other hand, the band of amplified disturbance frequencies

becomes narrower and the maximum amplification rate -aim becomes smaller for

the fast supersonic mode C., > u¢, when the high-speed stream has the lower value

of the ratio of specific heats (see Fig. 4.19b).

4.6 Eigenfunction Behavior

For a given eigenvalue a, the eigenfunction 7r(y) for the pressure dis-

turbances, corresponding to amplified disturbances (a; < 0), can be evaluated by

integrating Eq. 2.32. The eigenfunctions of subsonic and supersonic mixing flows

were calculated for Case 2. The eigenfunction ir(y) of the most amplified eigenvalue

am is shown in Fig. 4.20a and 4.20b for subsonic mixing layers with free stream

Mach numbers MI --* 0 and M = 2.0, respectively. The solid lines in these figures

are the real part of ir(y) and the dashed lines are the imaginary part of 7r(y). As can

be seen from the equation, both real and imaginary parts of the eigenfunctions 7r(y)

decay exponentially away from the mixing layers in both the high- and low-speed

streams. For supersouic mixing layers, the pressure eigenfunction 7r(y) of the most

amplified eigenvalue am radiates into the high-speed stream for the slow supersonic

mode Cp.. < uc and radiates iato the low-speed stream for the fast supersonic mode

Cpm > u. But for these two supersonic unstable modes, the pressure eigenfunc-

tions 7r(y) display an oscillatory decay in the stream with supersonic disturbances

and an exponentially decay in the stream with subsonic disturbances (see Fig. 4.21a

and 4.21b).
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4.7 The Universal Dependence

The paper by Bogdanoff [1983] and the experimental results on tur-

bulent mixing layers by Chinzei et al. [1986] and by Papamoschou & Roshko [1986, 0

1988] suggest that the isentropically estimated convective Mach number (defined by

Eq. 1.1) is the appropriate parameter for scaling the effect of compressibility. Having

defined the convective Mach number of the turbulent mixing layers, Papamoschou

& Roshko argued that the expression of the growth rate

6' = fn(-2, L2, M1, M 2, i,7Y 2) (4.4)
U1 Pi

can be reduced into the simpler expression

n(_2 , L..2 1,71,172,1 Mc ), v(4.5)
Ul Pi

if compressibility effects can be expressed in terms of a single parameter 11c, . After 0

uncoupling the effect of the convective Mach number Mc1 , they suggested that the

growth rate of a compressible mixing layer might be generally expressed as

'5"o -F( Mcl ) ,(4.6)

0

where b6' is the growth rate of the corresponding incompressible mixing layer and

F is a nearly universal function, over a wide range of velocity ratios, density ratios.

and ratios of specific heats. "

In the numerical investigations of the linear instability of an inviscid.

compressible plane mixing layer, we considered a two-dimensional, spatially growing

wave disturbance of the form

q= q(y) eit'(Z-c) , (4.7)

- • i ! a !0
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where a is a complex wave number and c is a complex wave velocity. The distur-

bance propagates as e-"e(cr' z - t), where w is a real disturbance frequency. The

linear instability characteristics of mixing layers with mean flow profiles described

in Eqs. 3.10, 3.15 and 3.18 were calculated for the mean flow conditions given in

Tables 4.1 - 4.3. The phase velocity of the most unstable mode Cp,. was obtained

from Eq. 4.1. This yields the convective Mach numbers Mc1 and Me 2 from Eq. 1.4.

It was shown in Section 4.2 that there are always two unstable waves

for supersonic mixing layers. One is with the phase velocity Cpm < uc (slow mode),

and the other is with the phase velocity Cpm > uc (fast mode). Since the slow

supersonic mode Cp.. < uc is more unstable than the fast supersonic mode Cpm >

uC for most cases given in Tables 4.1 - 4.3, only the slow mode was considered for

supersonic convective Mach numbers. Results shown in Figs. 4.22a - 4.22h, which

were obtained from different mean flow conditions listed in Tables 4.1 - 4.3, indicate

that if the most unstable eigenvalue for a compressible mixing layer is normalized

by its value corresponding to an incompressible mixing layer (at the same velocity

ratio, density ratio and the ratio of the specific heats), the ratio is approximated as

a function of the convective Mach number only for the free stream conditions given

in Tables 4.1 - 4.3., i.e.,

b"(Mei) 0 max {-Cfi(u2/ul, p2/ P1, 71, 72, Mcl ) F(c) 48

m= 0) - MaX--ai(u 2 /Ul, P2/Pl 71,72, Mcl = 0)}

'.he solid line estimate of 6'(Mcj )/,'(Mci = 0) in Figs. 4.22a - 4.22h was computed

using all the data corresponding to the seventeen different mean flow conditions

listed in Tables 4.1 - 4.3, and least squares fitting the normalized maximum ampli-

fication rate vs. the convective Mach number Mc1 , for the range of Mfc from 0 to
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2 with a function of the form (see Fig. 4.23)

6'(Mi) 1 + PI e(P2MC1+P3 C1 +P4

( MC1 = 0) 1 + XP

where 0

po = 0.758, p = 1.902, P2 = 0.523,

P3 = -2.196, P4 = 3.710.

Note that 6'(Mcl - oo)/6'(Mci = 0) --+ 0, i.e., the normalized maximum am- 0

plification rate of unbounded mixing layers decreases continuously with increasing

convective Mach number in the supersonic region. Note also that these results

suggest that (dF/dMWci)M o = 0, as might have been argued a priori. Finally, •

we note that the quality of the fit, assuming the p, = 2 (exactly), which yielded

slightly different values for the remainder of the fit parameters, was essentially the

same. The results, shown in Figs. 4.22a - 4.22h, also suggest that the normalized

maximum amplification rate decreases significantly wit-'. increasing Mc1 for subsonic

convective Mach numbers. In the region 1 < Mc, < 2, this normalized amplifica-

tion rate decreases slowly, but continuously as the convective Mach number Me1 is 5

increased.

In the second set of calculations, the mean temperature profile was

assumed to be a hyperbolic tangent profile and was obtained from Eq. 3.17. The

normalized amplification rate w-,as calculated for different values of the temperature

ratio (Cases 18, 19 and 20) as a function of the convective Mach number Mc1

from 0 to about 2.0, for a velocity ratio u2/u, = 0.5 and a gas constant ratio

R 2 /R 1 = 1.0. The results, shown in Fig. 4.24, substantiate the convective Mach

number as the relevant compressibility parameter and also display good agreement

IS
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with the plot of ,'(Mji)/6'(Mji = 0) obtained from Eq. 4.9, even though these two

mean temperature profiles are very different at supersonic convective Mach numbers

(see Figs. 3.4 and 3.6).

A comparison of the estimate of 6'(Mc1 )/6'(MVo - 0) with Ragab &

Wu's numerical data and with Papamoschou & Roshko's experimental data is made

in Fig. 4.25. The result of our linear instability calculations is in close agreement

with Ragab & Wu's result, which was also based on linear instability calculations,

but using a laminar velocity profile at the velocity ratio u 2 /U1 = 0. Also, Ragab

& Wu used the isentropically estimated convective velocity uc to approximate the

convective velocity of the spatially growing wave disturbances instead of the phase

velocity of the most unstable mode Cp,,, as was done here. The difference between

Cpm and u,, though not small in the region of supersonic convective Mach numbers,

does not affect the results, since the normalized amplification rates are very small in

this region. According to Papamoschou & Roshko's experimental data, the growth

rate of the mixing layer approaches an asymptotic value as the convective Mach

number becomes supersonic. As opposed to the experimental findings, however, the

growth rate of the unbounded shear layers, based on linear instability calculations,

decreases continuously in the super'sonic convective Mach number region.

4.8 Oblique Wave Disturbances

The numerical calculations described above were carried out by as-

suming that the disturbances in the mixing layers are two-dimensional and spa-
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tially growing. In the work of Gropengiesser [1970], Ragab & Wu [1988], Jackson

& Grosch [1988] and Sandham & Reynolds [1989], it was found that a mixing layer

with three-dimensional wave disturbances has the same general behavior as that

with two-dimensional wave disturbance but with higher growth rates over some

range of the propagation direction for the high-speed mixing layers.

If a mixing layer is subjected to a small, three-dimensional, spatially

growing wave disturbance of the form

q'(x, y, z, t) = q(y)e(cz + ,z - at) , (4.10)

where q is the disturbance amplitude, a and 0 are the complex wave numbers in

the downstream x and cross-stream z directions respectively, and w is the real dis-

turbance frequency. If we substitute these three-dimensional disturbances into the

linearized three-dimensional basic equations, the second-order differential equation 0

for the pressure disturbance, similar to Eq. 2.32, is obtained

"+7r- + CI2 + 2 _ 2'lM7(r- c) 2 /R , (4.11)u- c kT R JW T [e,1R + (-y - 1)] 0
where c = w/a is the complex phase velocity. The following transformations, wb" h

are due to Squire [1933], are introduced

&2 = a2 +'82, &Mf1 = aM 1 , &Fr = ar. (4.12)

Thus,

a = & cos(t9), 8 = sin(0), M cos(0). (4.13)

Using these transformations, Eq. 4.11 can be cast into the same form as those for

the flow with two-dimensional wave disturbances, i.e.,

f [i4c 1  u-- .... R (4.14)
T C T/RT- + 1)]



45

The instability characteristics of the three-dimensional disturbances

were studied for compressible mixing layers formed by different perfect gases. The

effect of the angle of propagation direction 0 of three-dimensional disturbances on

the instability behavior of mixing layers was considered. For the mean profiles

given by Eqs. 3.10, 3.15 and 3.20 with u2 /u 1 = 0.5, T2/T = 2.0, R 2 /R, = 0.5

and -yj = 72 = 1.4, the amplification rate as a function of the propagation angle

t9 is shown in Figs. 4.26a and 4.26b for the cases Mej = 0.25 and Mj 1 = 0.75 re-

spectively. The maximum amplification rate -aim decreases as the angle t9 of the

disturbance increases for the low-speed mixing layers. Also, the band of unstable

frequencies becomes narrower as the angle t9 of a disturbance increases. For the

0 high-speed mixing layer, the maximum amplification rate is higher than that of the

corresponding two-dimensional disturbances over some range of the angle of prop-

agation 09. Therefore, the three-dimensional results may provide better agreement

* with the experimental data for high Mach number mixing layers. Recall, however.

that according to Papamoschou & Roshko's experimental data, the growth rate

approaches an asymptotic value as the convective Mach number Mj 1 becomes su-

* personic. Even though the growth rate of the oblique wave disturbances is higher

than the corresponding two-dimensional disturbances, it nevertheless decreases con-

tinuously as the convective Mach number Mc1 is increased (see Fig. 4.27).

4.9 Wake-dominated Mixing Flows

Owing to the finite thickness of a splitter plate and the displacement

thickness of the splitter plate boundary layers, the initial region of a two-stream mix-

* ing flow is wake-dominated. The mean quantities of the developing wake/mixing
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laver downstream of a splitter plate can be obtained by numerically solving the

laminar, two-dimensional, thin-layer Navier-Stokes equations. In order to simplify

the problem, we assumed that the mean velocity profile is composed of the usual

hyperbolic tangent profile plus a wake component (due to the splitter plate) repre-
0

sented by a Gaussian distribution (see Eq. 3.12). For incompressible mixing layers,

Koochesfahani & Frieler [1987] studied the linear spatial instability characteristics

of both uniform and non-uniform density plane mixing layers, taking into account
0

the wake component of the initial velocity profile. They found that there are two

unstable waves in incompressible mixing layers. One is the shear layer mode and

the other is the wake mode. For compressible mixing layers, the instability be-

havior of mixing layers was investigated here with a wake component in the mean

velocity profile. The shear layer mode and the wake mode corresponding to that of

the incompressible mixing flows found by Koochesfahani & Frieler were also found

for compressible mixing layers. The instability characteristics of the shear layer

mode and the wake mode, with different normalized wake deficits w, are shown in

Figs. 4.28a and 4.28b at free stream Mach numbers M = 1 and M1 = 2 respectively.

As the normalized wake deficit w increases, the mixing layer becomes more unstable 0

and the band of amplified disturbance frequencies w becomes narrower for both the

shear layer mode and the wake mode. A comparison is made in Fig. 4.29 of the

normalized growth rate as a function of the convective Mach number Mc, of both 0

shear layer mode and the wake mode (w = 0.4) with the function F(Mcl) and with

the Papamoschou & Roshko experimental data. For the shear layer mode, the nor-

malized growth rate has a similar behavior as the function F(Mj1 ), but with higher 0

values of the normalized growth rate in the region 0 < M 1 < 2. As the convective

Mach number Mj 1 increases continuously in the region of supersonic disturbances,

the growth rate of the shear layer mode starts to rise up to a local extremum value 0

0
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and then falls again. For the wake mode, the amplification rate decreases very

slowly in the subsonic convective Mach number region and continuously decreases

in the region of supersonic convective Mach numbers. Figure 4.30a shows the effect

of the normalized wake deficit w on the normalized maximum amplification rate of

the shear layer mode. If the convective Mach number Ml is less than about 0.4,

the value of the normalized wake deficit w does not affect the behavior of the nor-

malized maximum amplification rate as a function of the convective Mach number

Mcl. But in the region 0.4 < Mc1 < 1.0, the normalized maximum amplification

rate decreases faster for smaller values of w. For supersonic convective Mach num-

bers, the value of the convective Mach number Mcl, which corresponds to the local

extremum value, shifts to bigger values as w decreases. For the wake mode, the

normalized maximum amplification rate decreases faster as a function of the con-

vective Mach number Mj 1 with increasing wake deficit w (see Fig. 4.30b). Studies

of wake-dominated mixing layers suggest that a larger value of the growth rate at

large convective Mach number Mc1 can be obtained by increasing the normalized

wake deficit w.

4.10 Effect of the Thickness of the Total Temperature Profile

The thickness of the total temperature profile may be much smaller

than that of the mean velocity profile in the initial region of the flow near the split-

* ter plate tip. It is interesting, therefore, to find out how this relative thickness can

affect the instability behavior of mixing layers. For incompressible mixing layers,

Koochesfahani & Frieler [1987] studied the effect of the density profile thickness on

the instability behavior of mixing layers. They found that when the high density



48

fluid is carried on the low-speed side, the density profile thickness must be smaller

than a certain value before the wake mode becomes dominant and that when the

high density fluid is on the high-speed side, regardless of the density profile thick-

ness, the shear layer mode is always dominant. For compressible mixing layers, we

considered the effect of the thickness of the total temperature profile relative to

the mean velocity profile on the amplification rate of mixing layers. In the calcula-

tions, the hyperbolic tangent mean velocity profile given by Eq. 3.10 and the total

temperature profile given by Eq. 3.16 with ((y) replaced by ((y/oa), see Fig. 3.5,

were considered, where a adjusts the thickness of the total temperature profile rel-

ative to the mean velocity profile. For the velocity ratio u 2 /Ul = 0.5, the total

temperature ratio Tt2 /TjI = 0.5 and a = 1.0, 0.8, 0.6, 0.4, the variation of the

amplification rate -ai, as a function of the amplified disturbance frequencies W, is

shown in Figs. 4.31a - 4.31c for different values of the free stream Mach number

MI. As the thickness of the total temperature decreases, the maximum amplifica- S

tion rate -aim increases and the band of amplified frequencies becomes wider for

both subsonic and supersonic mixing layers. The normalized maximum amplifica-

tion rate as a function of the convective Mach number M 1 is shown in Fig. 4.32 for •

different values of the relative thickness parameter a. As the thickness of the total

temperature profile a becomes smaller, the normalized maximum amplification rate

decreases slower in the subsonic convective Mach number region. For supersonic •

convective Mach numbers, the larger value of the normalized amplification rate is

obtained with decreasing a.
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CHAPTER 5

THE EFFECT OF WALLS ON SPATIALLY GROWING

SUPERSONIC MIXING LAYERS

The inviscid instability, with respect to supersonic disturbances, of a

spatially growing plane mixing layer inside parallel flow guide walls is investigated

here using linear stability analysis. The mixing layer is assumed to be inviscid

and formed by the same gases in the two streams. The mean flow is treated as

parallel. The purpose of this chapter is to give a description of how the instability

characteristics of the mixing layer are affected by the flow guide walls and by the

distance between the walls. It is found that the maximum amplification rates of the

mixing layers approach an asymptotic value and that this maximum amplification

rate increases to a maximum value and decreases again as the distance between the

* parallel walls decreases continuously. For a mixing layer inside parallel flow guide

walls, the growth rate of three-dimensional modes is larger than the corresponding

two-dimensional mode at higher convective Mach numbers. But the growth rate of

* two-dimensional supersonic instability waves is higher than their three-dimensional

counterparts for a mixing layer inside a rectangular duct (Tam & Hu [1988, 19891).

All flow quantities used in this chapter are the dimensionless quantities defined in

* Chapter 2.
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5.1 Instability Behavior of Bounded Mixing Layers

The instability characteristics of mixing layers with mean velocity

and temperature profiles given by Eq. 3.10 and Eq. 3.15 are determined for two-

dimensional, spatially growing disturbances with u2 /ui = 0.5, T2/T 1 = 1.0, 6 = 3

unit lengths (defined in Eq. 2.42) and d = 46 = 12 unit lengths, at different free

stream Mach numbers M 1 . The main result, shown in Fig 5.1, is that when the

convective Mach number of the flow is supersonic, as was also noted by Mack [1969.,

1984] in his analysis of supersonic boundary layer stability, there are many super-

sonic unstable modes, as opposed to only one for the case of subsonic convective

Mach numbers.

The existence of many supersonic instability modes in the case of

mixing layers, has been known from the work of Tam & Hu [1988, 1989]. Their

results, however, were based on instability calculations inside a three-dimensional

rectangular channel. Fig. 5.2 (the normalized maximum amplification rate vs. the

convective Mach number M, 1) indicates that the growth rate of the most unstable

supersonic instability mode of a mixing layer with two-dimensional, spatially grow-

ing disturbances approaches an asymptotic value as the convective Mach number S

becomes supersonic, in accord with the previously cited growth rate experiments by

Papamoschou & Roshko [1986, 1988]. The convective Mach number here is defined

by Eq. 1.4.

If a mixing layer inside parallel flow guide walls is subjected to a small.



51

three-dimensional, spatially growing disturbance of the form

q'(x,y,z,t) = q(y) exp[i(ax + Oz - wt)], (5.1)

where f is a complex wave number in the z direction and Lo is a real disturbance

frequency, then the growth rate of the three-dimensional mode is larger than the

corresponding two-dimensional mode at high convective Mach numbers over some

range of propagation direction (see Fig. 5.3). This result is similar to that of previous

studies of a free mixing layer with three-dimensional disturbances by Gropengiesser

[1970], Ragab & Wu [1988], Jackson & Grosch [1988] and by Sandham & Reynolds

[1989]. For a mixing layer inside a rectangular duct, however, Tam & Hu [1989]

considered three-dimensional, spatially growing disturbances of the form

p' = p(y) exp[i(ax - wt)] cos(2m7rz/b); m = 0, 1, 2, ... , (5.2)

where p' is the perturbation pressure and b is the span of the rectangular duct. The

important result of their investigations was that, for reasonably thick mixing layers,

two-dimensional supersonic instability waves have larger spatial growth rates than

their three-dimensional counterparts. We conducted similar calculations as part of

this investigation. Our results are in agreement with Tam & Hu's results. The

instability characteristics of three-dimensional modes are characterized by similar
S

behavior as two-dimensional modes. As a consequence, two-dimensional modes were

considered mainly in the work described below.

A comparison of the current results of growth rate with the Pa-

pamoschou & Roshko experimental results [1986, 1988] and with the results ob-

tained from the two-dimensional free mixing layer calculations by Zhuang et al.
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[1988], are made in Fig. 5.4. We can see how the parallel flow guide walls affect the

instability of the mixing layer. The existence of walls makes the mixing layer more

unstable and keeps the maximum amplification rates from reaching asymptotically

small values for supersonic convective Mach numbers, but has no discernible effect 0
on the amplification rate in mixing layers with subsonic convective Mach numbers.

For a fixed high stream Mach number M 1 , with the same mean veloc-

ity and temperature profiles given as described above, the instability characteristics

of mixing layers with two-dimensional spatially growing waves are calculated for

different values of d (d = 20, 16, 12, 8 unit lengths). The most unstable super-

sonic instability mode, which is not the Kelvin-Helmholtz mode, moves to higher

frequencies and its maximum amplification rate increases as the distance between

two parallel walls decreases (see Fig. 5.5). This maximum amplification rate, how-

ever, reaches its maximum value and decreases as the distance between the walls

decreases continuously (see Fig. 5.6). The instability characteristics of subsonic

mixing layers are not affected by the distance between the walls. The thickness of

the mixing layer was chosen as the characteristic length in the calculations, which

made the solution of the bounded mixing layer, as d/6 -. oo, approach that of the

corresponding free mixing layer. Note that if the distance between the parallel walls

is chosen as the characteristic length, the growth rate of the supersonic instability

waves, scaled to this characteristic length, decreases at a fixed frequency as the

mixing layer becomes thicker and thicker (Tam & Hu [1989]).

0
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5.2 The Pressure Perturbation Field

With the computed eigenfunction 7r(y), the pressure perturbation

fields can be obtained by

p'(x,y,t) = 7r(y) exp[i(ax - wt)]. (5.3)

The real part of p' represents the physical quantity of the pressure perturbations.

Contour plots of the pressure perturbation fields, which combine the periodic term

and the growth term, are shown in Figs 5.7, 5.8, 5.9 and 5.10. Note that the con-

vective Mach numbers of the mixing layers corresponding to these contour plots

are either close to, or larger than, unity, so the growth of the mixing layers is

small within the extent plotted. Fig. 5.7 shows the flow with the same supersonic

convective Mach numbers at both sides of the boundaries (Mc 1 = Mc2 = 1.375).

We can see that the compression/expansion waves propagate along the Mach an-

gle v, = arcsin(1/Mcl) or V2 = arcsin(1/M, 2 ) for supersonic convective Mach

numbers. By measuring the Mach angle (vj = v2 = 45.70), I estimated a con-

vective Mach number of Mj 1 = M,2 = 1.397, in close agreement with Mc, and

Me 2 estimated using Eq. (1.4). The variations in the strength of these compres-

sion/expansion waves indicate that these waves are reflected by the walls. Fig. 5.8

is the contour plot for the free mixing layer with the upper stream supersonic and

the lower stream subsonic (Mj 1 = 1.81 and M, 2 = 0.94). The upper flow compres-

sion/expansion waves propagate with the Mach angle vi = 34.20, i.e., Mj1 = 1.78,

with no reflections. From these two contour plots we can see that for supersonic

disturbances, because of the existence of the walls, the energy carried by the wave

system is reflected back to the mixing layer instead of being radiated and lost to the

far field. The feedback mechanism between the growing supersonic mixing layer and
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the wave system makes the bounded supersonic mixing layer more unstable than 9
the corresponding free supersonic mixing layer, which is losing energy to acoustic

radiation to the far field (Mack [1969], Tam [1989] and Dimotakis [1989]). Figs. 5.9

and 5.10 are two other examples of contour plots for bounded mixing layers; one is

with the lower stream supersonic and upper stream subsonic, and the other is vice

versa. Reflections of the compression/expansion wave system propagating along the

Mach angles for supersonic convective Mach numbers can also be seen in those two

figures (Zhuang et al. [1989]).

5.3 Streaklines of the Disturbed Mixing Layer

In order to describe the flow patterns of the mixing layers, streaklines

were calculated for the modes corresponding to the maximum amplification rates. 4

A streakline is the locus of particles which have earlier passed through a prescribed

point. In the experiments, the streaklines can be produced and visualized by the

continuous release of marked particles (dye, smoke, or bubbles) from a given point. 0

The procedure for the calculation of streaklines is the same as that used by Michalke

[1965]. The motion of a particle is given by

dx- U, + (Y)

dt (5.4)
dy _j'XYtdty = eiV'(x,y,t).
dt

With appropriate initial conditions, x(to) = xo and y(to) = yo, a pathline can be

determined. In order to plot each streakline for a fixed time, the pathlines for var-

ious initial times, to, are calculated. In the calculations, I have chosen x0 = 0,

el = 0.0005 for subsonic convective Mach numbers and x0 = 0, el = 0.1 for super- S

S
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sonic convective Mach numbers. The results are plotted in Figs. 5.11 and 5.12 and

represent streaklines corresponding to supersonic and subsonic disturbances, respec-

tively. These flow patterns show that, for supersonic disturbances, the growth of

the mixing layer, as labeled by the streaklines, is much slower than that for subsonic

disturbances, and the spreading rate of the mixing layer is small.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

An investigation of the linear instability behavior of compressible un-

bounded and bounded mixing layers with spatially growing wave disturbances has

been performed. The mixing layer is formed by two parallel streams with different

perfect gases and the flow is assumed to be inviscid and non reacting.

6.1 Results for Unbounded Mixing Layers

For compressible unbounded mixing layers with given ratios of specific •

heats 3yi, -y2 , the instability characteristics of flows were calculated in which the free

stream Mach number M 1 varied from 0 to 11, the velocity ratio U2/Ul varied from

0.25 to 0.75, the temperature ratio T2 /T varied from 0.2 to 5.0, the gas constant

ratio R 2/R 1 varied from 0.1 to 5. The effect of compressibility on the properties

of mixing layers was determined. The sensitivity to the details of the mean flow

profiles on the instability behavior of mixing layers was also studied. A summary

of the results for unbounded mixing layers is presented below:

1. For a free mixing layer with hyperbolic mean flow profiles, there is

only one unstable mode propagating with the phase velocity of the

most unstable wave C*m approximately equal to the isentropic esti-

mate of the convective velocity of the large scale structures u for



57

subsonic convective Mach numbers. As the convective Mach number

approaches or exceeds unity, there are always two unstable modes.

One with a phase velocity C*m < u* (slow mode) and the other with

a phase velocity C*m > uc (fast mode).

2. For supersonic mixing layers, the phase velocity of the most unstable

mode C, decreases for the slow mode and increases for the fast mode

with increasing free stream Mach number M1 . The bands of amplified

disturbance frequencies w of these two unstable modes overlap for

some range of frequencies. For the low supersonic convective Mach

numbers, the fast mode is more unstable than the slow mode when

the heavy gas is on the low-speed side and the slow mode is dominant

when the heavy gas is on the high-speed side.

3. For a given convective Mach number, the band of unstable frequencies

* w becomes wider and the maximum amplification rate -trm becomes

smaller as the velocity ratio u 2 /u 1 increases. The phase velocity of

the most unstable mode Cm is a linear function of the velocity ratio

• u2 /u 1 for both subsonic and supersonic convective Mach numbers.

4. For an incompressible unbounded mixing layer with a hyperbolic mean

* velocity profile, the maximum amplification rate -aim is approxi-

mately a linear function of the velocity ratio A = (1 - u 2/ul)/(1 +

U2/Ul) and -aim rises with increasing density ratio P2/pI for all

0I
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0 < A < 1 and density ratios P2/P1 < 1. For density ratios P2/PI

greater than unity, the function -aim((A) becomes nonlinear and the

maximum amplification rate -aim falls with increasing density ratio

P2/PI for some values of the velocity ratio A.

5. The instability characteristics of unbounded mixing layers are not af-

fected by the difference between y1 and -y2 for incompressible flows.

For the subsonic mode (A1, 1 5 0) and the slow supersonic mode

Cpm < u , the band of unstable frequencies w becomes wider and

the maximum amplification rate -aim rises if the high-speed stream

has the lower value of the ratio of specific heats. But the band of am-

plified disturbance frequencies becomes narrower and the maximum

amplification rate falls for the fast supersonic mode C*,, > u* when

the high-speed stream has the lower value of the ratio of specific heats.

6. The eigenfunction 7r(y) decays exponentially away from the mixing

layers in the stream with subsonic disturbances and displays an oscil-

latory decay in the stream with supersonic disturbances.

7. A nearly universal dependence of the normalized maximum amplifica-

tion rate on the convective Mach number is found for two-dimensional.

spatially growing wave disturbances, with the normalized maximum

amplification rate decreasing significantly with increasing convective

Mach numbers in the subsonic region. At high convective Mach num-

0
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bers, the maximum amplification rate -ceim of mixing flows with

three-dimensional spatially growing disturbances is bigger than that

of corresponding two-dimensional disturbances. But for both two-

dimensional and three-dimensional disturbances, the maximum am-

plification rate decreases continuously as tie convective Mach number

Me1 increases.

8. Adding a wake component to the mean velocity profile, or decreasing

the thickness of the total temperature profile relative to the mean

velocity profile, can make the normalized maximum amplification rate

decrease slower for both subsonic and supersonic convective Mach

numbers.

6.2 Results for Bounded Mixing Layers

For compressible bounded mixing layers, the inviscid instability with

respect to supersonic disturbances, of a spatially growing plane mixing layer inside

parallel flow guide walls has been investigated using linear stability analysis. The

* thickness of the mixing layer was chosen as the characteristic length in the calcula-

tions, which made the solutions of the bounded mixing layer, as d/6 --+ oo, approach

that of the corresponding unbounded mixing layer. The effects of the parallel walls

* and the distance between the walls on the instability characteristics of mixing !ny-

ers were determined. Contour plots of the pressure perturbation fields for both

unbounded and bounded mixing layers were calculated. Also, the flow patterns of

40
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the mixing layers were obtained by calculating the streaklines of the mixing layers.

A summary of the results for bounded mixing layers is given below:

1. The existence of parallel flow guide walls makes the mixing layer

more unstable and keeps the maximum amplification rate -ai, from

reaching an asymptotically small value for supersonic convective Mach

numbers, but has no discernible effect on mixing layers with subsonic

convective Mach numbers.

2. The most unstable supersonic instability mode, which is not the

Kelvin-Helmholtz mode, moves to higher frequencies and its maxi-

mum amplification rate -aim increases to its maximum value and

decreases again as the distance between the walls decreases continu- 0

ously.

3. For supersonic convective Mach numbers, the reflections of the com-

pression/expansion waves caused by the parallel walls provide a feed-

back mechanism between the growing mixing layer structures and the

wave system. Bounded mixing layers are more unstable than the

corresponding unbounded mixing layers. The maximum amplifica-

tion rates -aim of the bounded mixing layers are found to approach

an asymptotic value for supersonic convective Mach numbers. The

streaklines of the flow confirm that the spreading rate of the mixing

layer is unusually small for supersonic disturbances.
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FIG. 4.29 A comparison of the results of the shear layer mode and the wake mode
for the case w = 0.4 with F(Mcl) and with Papamoschou & Roshko's
experimental data.
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FIG. 5.4 A comparison of the data for 2-D bounded mixing layer with Papamoschou
& Roshko's experimental data and with the function F(M,1 ), which was
obtained by least squares fitting the data from the calculations of 2-D
mixing layers.
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FIG. 5.12 Streaklines for the case U/1= 0.5 and T2/T1  1.0 at b 3 unit
lengths, d = 12 unit lengths and M, = 2.0 (subsonic convective Mach
numbers Mc, = M2= 0.5).


